Previous Articles Next Articles
Online:
2017-09-20
Published:
2017-09-20
通讯作者:
张效忠,崔永涛:cuiyongtao20@163.com
基金资助:
CLC Number:
丰安徽1,3,王伍梅2,李桂娇4,郭龙彪1,张效忠2*, 崔永涛1*. 植物碱基错配修复系统中Muts蛋白家族研究进展[J]. 中国稻米, DOI: 10.3969/j.issn.1006-8082.2017.05.002 .
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2017.05.002
[1] Manova V, Gruszka D. DNA damage and repair in plants-from models to crops[J]. Front Plant Sci, 2015, 6: 885. [2] Bray C M, West C E. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity[J]. New Phytol, 2005, 168(3): 511-528. [3] Horwath M, Kramer W, Kunze R. Structure and expression of the Zea mays mutS-homologs Mus1 and Mus2 [J]. Theor Appl Genet, 2002, 105(2-3): 423-430. [4] Rastogi R P, Richa, Kumar A, et al. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair [J]. J Nucleic Acids, 2010, 6551: 592 980. [5] Lario L D, Ramirez-Parra E, Gutierrez C, et al. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response [J]. J Exp Bot, 2011, 62(8): 2 925-2 937. [6] Culligan K M, Hays J B. Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA [J]. Plant Cell, 2000, 12(6): 991-1 002. [7] Puchta H, Hohn B. From centiMorgans to base pairs: homologous recombination in plants[J]. Trends Plant Sci, 1996, 1(10): 340-348. [8] Waterworth W M, Drury G E, Bray C M, et al. Repairing breaks in the plant genome: the importance of keeping it together [J]. New Phytol, 2011, 192(4): 805-822. [9] Spampinato C P, Gomez R L, Galles C, et al. From bacteria to plants: A compendium of mismatch repair assays [J]. MutatRes, 2009, 682(2-3): 110-128. [10] Iyer R R, Pluciennik A, Burdett V, et al. DNA mismatch repair: functions and mechanisms[J]. Chem Rev, 2006, 106(2): 302-323. [11] Kunkel T A, Erie D A. DNA Mismatch Repair [J]. Annu Rev Biochem, 2005, 74: 681-710. [12] Modrich P. Mechanisms in eukaryotic mismatch repair [J]. J Biol Chem, 2006, 281(41): 30 305-30 309. [13] Marti T M, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways[J]. J Cell Physiol, 2002, 191(1): 28-41. [14] Golubov A, Yao Y, Maheshwari P, etal. Microsatellite instability in Arabidopsis increases with plant development[J]. Plant Physiol, 2010, 154(3): 1 415-1 427. [15] Lafleuriel J, Degroote F, Depeiges A, et al. Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues [J]. Plant Mol Biol, 2007, 63(6): 833-846. [16] Dzantiev L, Constantin N, Genschel J, et al. A defined human system that supports bidirectional mismatch-provoked excision[J]. Mol Cell, 2004, 15(1): 31-41. [17] Prolla T A, Christie D M, Liskay R M. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene[J]. Mol Cell Bio, 1994, 14(1): 407-415. [18] Hall M C, Shcherbakova P V, Fortune J M, et al. DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair[J]. Nucleic Acids Res, 2003, 31(8): 2 025-2 034. [19] Culligan K M, Hays J B. DNA mismatch repair in plants (an Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic MutS homologs)[J]. Plant Physiol, 1997, 115(2): 833-839. [20] Ade J, Belzile F, Philippe H, et al. Four mismatch repair paralogues coexist in Arabidopsis thaliana: AtMSH2, AtMSH3, AtMSH6-1 and AtMSH6-2[J]. Mol Gen Genet, 1999, 262(2): 239-249. [21] Doerks T, Copley R R, Schultz J, et al. Systematic identification of novel protein domain families associated with nuclear functions[J]. Genome Res, 2002, 12(1): 47-56. [22] Lu X, Liu X, An L, et al. The Arabidopsis MutS homolog AtMSH5 is required for normal meiosis[J]. Cell Res, 2008, 18(5): 589-599. [23] Higgins JD, Vignard J, Mercier R, et al. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis[J]. Plant J, 2008, 55(1): 28-39. [24] Dong C, Whitford R, Langridge P. A DNA mismatch repair gene links to the Ph2 locus in wheat[J]. Genome, 2002, 45(1): 116-124. [25] Virdi K S, Wamboldt Y, Kundariya H, et al. MSH1 is a plant organellar DNA Binding and Thylakoid Protein under precise spatial regulation to alter development[J]. Mol Plant, 2016, 9(2): 245-260. [26] Lloyd A H, Milligan A S, Langridge P, et al. TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.)[J]. BMC Plant Biol, 2007, 7: 67. [27] Xu Y Z, Arrieta-Montiel M P, Virdi K S, et al. MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light[J]. Plant Cell, 2011, 23(9): 3 428-3 441. [28] Abdelnoor R V, Yule R, Elo A, et al. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS[J]. Proc Natl Acad Sci USA, 2003, 100(10): 5 968-5 973. [29] Abdelnoor R V, Christensen A C, Mohammed S, et al. Mitochondrial genome dynamics in plants and animals: convergent gene fusions of a MutS homologue [J]. J Mol Evol, 2006, 63(2): 165-173. [30] Davila J I, Arrieta-Montiel M P, Wamboldt Y, et al. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis[J]. BMC Biol, 2011, 9(1): 64. [31] Xu Y Z, Santamaria Rde L, Virdi K S, et al. The chloroplast triggers developmental reprogramming when mutS HOMOLOG1 is suppressed in plants[J]. Plant Physiol, 2012, 159(2): 710-720. [32] Shedge V, Davila J, Arrieta-Montiel M P, et al. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance[J]. Plant Physiol, 2010, 152(4): 1960-1970. [33] Xu Y Z, Arrieta-Montiel M P, Virdi K S, et al. MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light[J]. Plant Cell, 2011, 23(9): 3 428 -3 441. [34] Sandhu A P, Abdelnoor R V, Mackenzie S A. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants[J]. Proc Natl Acad Sci U S A, 2007, 104(6): 1 766-1 770. [35] Virdi K S, Laurie J D, Xu Y Z, et al. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth[J]. Nat Commun, 2015, 6: 6386. [36] Zhao N, Xu X, Wamboldt Y,et al. MutS HOMOLOG1 silencing mediates ORF220 substoichiometric shifting and causes male sterility in Brassica juncea [J]. J Exp Bot, 2016, 67(1): 435-444. [37] Yang X, Kundariya H, Xu Y Z, et al. MutS HOMOLOG1-derived epigenetic breeding potential in tomato[J]. Plant Physiol, 2015, 168(1): 222-232. [38] Culligan K M, Hays J B. Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA[J]. Plant Cell, 2000, 12(6): 991-1002. [39] Gomez R L, Galles C, Spampinato C P. High-level production of MSH2 from Arabidopsis thaliana: a DNA mismatch repair system key subunit[J]. Mol Biotechnol, 2011, 47: 120-129. [40] Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology[J]. Annu Rev Biochem, 1996, 65(1): 101-133. [41] Lee S D, Surtees J A, Alani E. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition[J]. J Mol Biol, 2007, 366(1): 53-66. [42] Culligan K M, Meyer-Gauen G, Lyons-Weiler J, et al. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins[J]. Nucleic Acids Res, 2000, 28(2): 463-471. [43] Malkov V A, Biswas I, Camerini-Otero R D, et al. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA[J]. J Biol Chem, 1997, 272(38): 23811-23 817. [44] Otterlei M, Warbrick E, Nagelhus T A, et al. Post-replicative base excision repair in replication foci[J]. EMBO J, 1999, 18(13): 3 834-3 844. [45] Johnson R E, Kovvali G K, Guzder S N, et al. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair[J]. J Biological Chem, 1996, 271(45): 27 987-27 990. [46] Umar A, Buermeyer A B, Simon J A, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis[J]. Cell, 1996, 87(1): 65-73.. [47] Chen C, Merrill B J, Lau P J, et al. Saccharomyces cerevisiae pol30(proliferating cell nuclear antigen)mutations impair replication fidelity and mismatch repair[J]. Mol Cell Biol, 1999, 19(11): 7 801 -7 815. [48] Chen W, Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast[J]. Genetics, 1999, 151(4): 1 299-1 313. [49] Opperman R, Emmanuel E, Levy A A. The effect of sequence divergence on recombination between direct repeats in Arabidopsis[J]. Genetics, 2004, 168(4): 2 207-2 215. [50] Li L, Santerre-Ayotte S, Boivin E B, et al. A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana[J]. Plant J, 2004, 40(6): 1 007-1 015. [51] Li L, Jean M, Belzile F. The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis[J]. Plant J, 2006, 45(6): 908-916. [52] Rayssiguier C, Thaler D S, Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants[J]. Nature, 1989, 342(6248): 396-401. [53] Datta A, Adjiri A, New L, et al. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccaromyces cerevisiae[J]. Mol Cell Biol, 1996, 16(3): 1 085-1 093. [54] Nicholson A, Hendrix M, Jinks-Robertson S, et al. Regulation of mitotic homeologous recombination in yeast: functions of mismatch repair and nucleotide excision repair genes[J]. Genetics, 2000, 154(1): 133-146. [55] Elliott B, Jasin M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells[J]. Mol Cell Biol, 2001, 21(8): 2 671-2 682. [56] Emmanuel E, Yehuda E, Melamed-Bessudo C, et al. The role of AtMSH2 in homologous recombination in Arabidopsis thaliana[J]. EMBO Rep, 2006, 7(1): 100-105. [57] Leonard J M. Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (Microsatellites) by inactivation of AtMSH2 Mismatch-Repair function[J]. Plant Physiol, 2003, 133(1): 328-338. [58] Meira L B, Cheo D L, Reis A M, et al. Mice defective in the mismatch repair gene Msh2 show increased predisposition to UVB radiation-induced skin cancer[J]. DNA Repair(Amst), 2002, 1(11): 929-934. [59] Young L C, Thulien K J, Campbell M R, et al. DNA mismatch repair proteins promote apoptosis and suppress tumorigenesis in response to UVB irradiation: an in vivo study [J]. Carcinogenesis, 2004, 25(10): 1 821-1 827. [60] Peters A. Mammalian DNA mismatch repair protects cells from UVB-induced DNA damage by facilitating apoptosis and p53 activation[J]. DNA Repair(Amst), 2003, 2(4): 427-435. [61] Narine K A D, Felton K E A, Parker A A M, et al. Non-tumor cells from an MSH2-null individual show altered cell cycle effects post-UVB[J]. Oncol Rep, 2007, 18(6): 1 403-1 412. [62] Casati P, Stapleton A E, Blum J E, et al. Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UVB[J]. Plant J, 2006, 46(4): 613-627. [63] 袁兵,崔海瑞,富昊伟,等. 水稻 Os09g24220 基因插入突变体的分子鉴定与农艺性状分析[J]. 浙江大学学报: 农业与生命科学版,2014,40(4):456-462. [64] Hollingsworth N M, Ponte L, Halsey C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair[J]. Genes Dev, 1995, 9(14): 1 728-1 739. [65] Kolas N K, Cohen P E. Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination[J]. Cytogenet Genome Res, 2004, 107(3-4): 216-231. [66] Tam S M, Samipak S, Britt A, et al. Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato[J]. Genetica, 2009, 137(3): 341-354. [67] Snowden T, Acharya S, Butz C, et al. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes[J]. Mol Cell, 2004, 15(3): 437-451. [68] Higgins J D, Armstrong S J, Franklin F C H, et al. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis[J]. Genes Dev, 2004, 18(20): 2 557-2 570. [69] Biswas I, Obmolova G, Takahashi M, et al. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis[J]. J Mol Biol, 2001, 305(4): 805-816. [70] Luo Q, Tang D, Wang M, et al. The role of OsMSH5 in crossover formation during rice meiosis [J]. Mol Plant, 2013, 6(3): 729-742. [71] Culligan K M, Hays J B. DNA mismatch repair in plants. An Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic MutS homologs [J]. PlantPhysiol, 1997, 115(2): 833-839. [72] Jean M, Pelletier J, Hilpert M, et al. Isolationand characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana [J]. Mol Gen Genet, 262(4-5): 633-642. [73] Leonard J M, Bollmann S R, Hays J B. Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences(microsatellites) by inactivation of AtMSH2 mismatch-repair function [J]. Plant Physiol, 2003, 133(1): 328-338. [74] Hoffman P D, Leonard J M, Lindberg G E, et al. Rapid accumulation of mutations during seed-to-seed propagation Arabidopsis of mismatch-repair-defective [J]. Genes Dev, 2004, 18(21): 2676-2685. [75] Xu J, Li M R, Chen L, et al. Rapid generation of rice mutants via the dominant negative suppression of the mismatch repair protein OsPMS1[J]. Theor Appl Genet, 2012, 125(5): 975-986. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||